

$2020\ Annual\ Drinking\ Water\ Quality\ Report$

June 25, 2021.

District of North Vancouver Utilities Department

Table of Contents

EX	ECUTI	VE SL	JMMARY	
1	SOL	JRCE	WATER	2
2	DN	V DIS	TRIBUTION SYSTEM & QUALITY ASSURANCE TESTING	2
	2.1	Gen	eral	2
	2.1.	1	Scheduled Weekly Sampling	3
	2.1.	2	Quarterly Disinfection By-Products Sampling	∠
	2.1.	.3	pH	∠
	2.1.	4	Metal Semi-Annual Sampling	
	2.1.	.5	Unscheduled Sampling	
3	RES	ULTS		5
	3.1	Sch	eduled Weekly Bacteriological Parameter Results	5
	3.2	Sch	eduled Weekly Chemical and Physical Parameter Results	7
	3.3	Qua	rterly Disinfection By-products Results	g
	3.4	Sch	eduled Semi-Annual Metal Results	10
	3.4.	1	Lead	11
	3.5	Uns	cheduled Results	11
4	OPE	ERATI	ONS, MAINTENANCE & CAPITAL PROGRAMS	11
	4.1	Wat	er System Scheduled Maintenance	11
	4.2	Сар	ital Upgrades	12
	4.3	Оре	rator Training & Qualification	17
5	ISSU	JES, I	NCIDENTS & RESPONSE PLANS	17
	5.1	Boil	Water Advisory	17
	5.2	Cus	tomer Complaints	17
	5.3	Duc	tile Iron Supply & Storage	17
	5.4	Sec	urity	17
	5.5	Wat	er Main Breaks	18
	5.6	Not	ification & Emergency Response	19
	5.7	Res	ponse Plans	19
ΑP	PEND	IX A:	Water System, Sample Sites and Sample Schedule	23
ΑP	PEND	IX B: I	Five Year Results by Water Quality Sample Site. 2016 - 2020	27

EXECUTIVE SUMMARY

This report is the nineteenth Drinking Water Quality Annual Report prepared by the District of North Vancouver. It provides water consumers with information about the quality of the potable water and the programs that support drinking water quality. Submission of this report to the Office of the Medical Health Officer for North Shore Vancouver Coastal Health fulfills regulatory obligations of the Drinking Water Protection Act, the British Columbia Drinking Water Protection Regulation and our application to the Medical Health Officer for an annual Drinking Water System Permit to operate a potable water system. This report adheres to Metro Vancouver's "Water Quality Monitoring and Reporting Plan for the GVWD and Member Municipalities," a template for the Greater Vancouver Water District and member municipalities water quality monitoring and reporting.

The Greater Vancouver Water District and the District of North Vancouver employ a multi-barrier science-based approach that encompasses water from the source to the point of delivery. This approach ensures consistent delivery of a reliable supply of safe drinking water. All potable water supplied to District of North Vancouver is treated at the Seymour Capilano Filtration Plant. In 2020, the District of North Vancouver's scheduled water sampling consistently met or exceeded regulatory requirements. The combined efforts of the Greater Vancouver Water District and the District of North Vancouver once again resulted in excellent water quality for our customers.

Document: 4721620

1 SOURCE WATER

All water supplied to the District of North Vancouver (DNV) by the Greater Vancouver Water District (GVWD or Metro) comes from the Capilano or Seymour surface water reservoirs followed by secondary treatment at the Seymour Capilano Filtration Plant (SCFP). Metro uses multiple barriers to protect and produce and supply safe drinking water including watershed protection, water treatment, source quality testing, transmission point quality testing and ongoing operation and maintenance of the water systems.

Prior to 2009, Metro's treatment of both the Capilano and Seymour sources was primary disinfection, including chlorine. In 2010 Seymour source water was treated at the Seymour Capilano Filtration Plant (SCFP). The SCFP incorporates multiple disinfection processes, including ultra filtration, ultraviolet radiation disinfection and chlorine. In 2015, tunnels were commissioned that linked the Capilano source water to the SCFP, marking a significant water treatment and quality milestone for the DNV and the region.

Metro analyzes source water for bacteriological, chemical and physical parameters according to the "BC Drinking Water Protection Regulation." The "Greater Vancouver Water District 2020 Water Quality Annual Report - Volume 1 & 2" summarizes water quality for all of the Metro Vancouver service area and is available on their website www.metrovancouver.org. The report will demonstrate that drinking water supplied by Metro to DNV met or exceeded all water quality standards and guidelines in 2020.

2 DNV DISTRIBUTION SYSTEM & QUALITY ASSURANCE TESTING

2.1 General

The DNV water distribution system delivers potable water to its customers through a waterworks system incorporating 363 km of water mains, 7 water pumping stations, 12 water storage reservoirs, and 35 pressure reducing stations. A population of approximately 89,767 is served through 21,259 service connections.

In 2020, Metro measured 18.6 million cubic metres of water delivered to the DNV distribution system through 18 metered connections. This represents a 5% reduction in volume over 2019. A map of the overall water distribution pipe system showing the 36 sampling stations and the 26 pressure zones is in Appendix A. Sampling and Testing is performed in three scheduled categories according to the requirement of the British Columbia Drinking Water Protection Regulation (the Regulation);

- 1. Weekly (bacteriological, chemical and physical parameters),
- 2. Quarterly (Disinfection by-products), and
- 3. Semi-Annually (Metals).

Health Canada's Guideline for Drinking Water Quality (the Guideline) sets category parameter limits on peer-reviewed scientific-based research as either maximum acceptable concentrations, aesthetic objective or operational guidance values.

- Maximum Acceptable Concentrations (MAC) are set for parameters that are known to detrimentally impact human health.
- Aesthetic Objectives (AO) are set for parameters which consumers base opinions about the drinkability of water.
- Operational Guidelines (OG) are set for parameters that could detrimentally impact water quality in the distribution system.

With the exception of temperature and free chorine residual, which are analyzed and recorded by DNV staff at the time of sampling, all other parameters are analyzed and reported by the accredited Lake City Metro lab after being collected and transported by DNV operators.

2.1.1 Scheduled Weekly Sampling

In 2020, DNV staff collected 1,189 regular scheduled samples from 36 sample sites or an average of 99 samples per month. This meets the Regulations population-based sample requirement for DNV of 36 sites and 86 samples per month. Three (3) of the previous thirty-nine (39) sites were removed in July 2019 to improve the efficiency of the sampling program. Sample collection is scheduled weekly on a rotating basis using strategic grouping of sample sites distributed across the system. Generally, 12 samples are collected twice weekly for a total of 24 samples per week.

Locations of weekly sample points are distributed according to the regulation recommendations as follows:

- 18% of sampling points at "source" (supply points from Metro transmission mains),
- 33% of sampling points at locations with medium flow,
- 36% of sampling points at locations with low flow, and
- 13% of sampling points at system dead-ends (very low flow).

Scheduled weekly analysis can be grouped into two categories bacteriological and chemical or physical parameters. Standards for water distribution systems are dictated by the requirements of the Regulation and the Health Canada's Guidelines for Canadian Drinking Water Quality. The guidelines provide either a maximum allowable concentration (MAC), an asthetic objective (AO) or an operational guidance (OG) value.

- Bacteriological parameters guidelines are:
 - Escherichia coli (E coli): MAC none detectable per 100mL
 - Total coliform: MAC none detectable in 100mL
 - Heterotrophic plate count (HPC): OG less than or equal to 500 CFU/mL
 - Turbidity: OG less than or equal to 5.0 NTU
- Chemical or physical parameter guidelines are:
 - Chlorine: OG between 0.04 2.0 mg/L
 - Temperature: AO less than or equal to 15°C

pH: OG between 7.0 and 10.5

Figure 1 below shows the number of scheduled weekly sample collected and analysed in 2020 on a monthly basis.

DISTRICT OF NORTH VANCOUVER - 2020

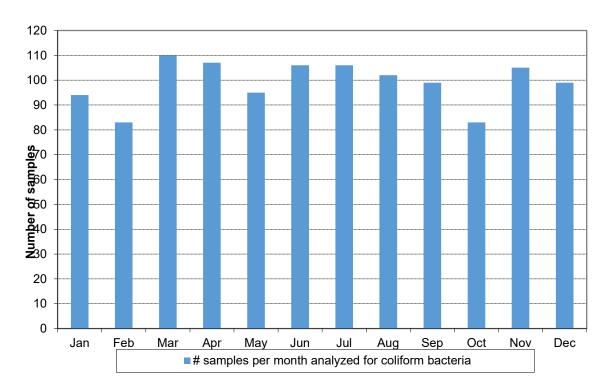


Figure 1. Number of Scheduled Weekly Samples Collected

2.1.2 Quarterly Disinfection By-Products Sampling

Haloacetic acids (HAA) and Trihalomethanes (THM) are groups of compounds that can form as by-products when water is treated with chorine. The Guideline maximum allowable concentrations for the running quarterly averages are 80 ppb for HAA and 100 ppb for THM with the added recommendation that they be kept as low as reasonably achievable (ALARA) without compromising disinfection.

In conformance with the regulation, DNV staff collected 16 samples for HAA and THM disinfection by-product analysis.

2.1.3 pH

A measurement of pH in the distribution system is made at the same time as the disinfection by-products at one of the four locations on a quarterly basis. The Guideline does not provide a required value but sets a target range of 7.0-10.5 and is primarily for corrosion control. Metro controls and stabilises pH at the source.

2.1.4 Metal Semi-Annual Sampling

In 2020, DNV staff collected 8 samples for analysis at 4 locations for metal testing in conformance with regulatory requirement.

2.1.5 Unscheduled Sampling

In addition to the scheduled weekly, quarterly and semi-annual samples, additional samples are collected and analyzed when warranted for water quality complaint, operational concern or maintenance activity. All water quality complaints are investigated immediately. The majority of water quality complaints received are about discoloured water. The cause of discoloured water in the DNV tend to fall into one of two categories:

- 1. An unintentional consequence of DNV or private activities (water main flushing, hydrant flow testing, construction activities or pipe breaks). Planned and unexpected work is performed in a manner that limits the impact on water quality, however, sometimes it occurs.
- 2. Spontaneous degradation of cast iron pipe. Cast iron pipe naturally breaks down and can release corrosion products that can, in sufficient concentration, make water appear discoloured, typically orange or brown in colour. In response to the issue, we slightly altered our practice for renewing water services on cast iron mains and reducing the force used for post-work flushing.

In 2020, 85 unscheduled samples were collected and analyzed.

3 RESULTS

The DNV water sampling program meets the regulatory requirements for sample location, frequency and quantity. Analytical results are provided by Metro to DNV on a weekly basis and reviewed internally upon receipt. The five-year summary of scheduled weekly sample results (free chlorine residual, total Coliform, HPC, E-coli and turbidity) for each sample site are presented in Appendix B. A summary of the results by parameter is provided below.

3.1 Scheduled Weekly Bacteriological Parameter Results

Bacteriological standards for water distribution systems are dictated by the requirements of the regulation and by Health Canada's <u>Guidelines for Canadian Drinking Water Quality</u> which provide the following criteria:

- **E. coli:** Escherichia coli is an indicator of potential micro bacteriological contamination and possible pathogens. Some strains of E. coli are pathogenic. The guideline states that the MAC is zero detectable E. coli per 100 mL sample.
- Total Coliform: Coliforms occur naturally in water sources and alone are not pathogenic but indicate the potential presence of pathogens. The guideline states that the MAC is 10 or less total coliform per 100 mL sample and that 90% or more of the samples for a given month must have zero detectable total coliform per 100 mL sample.
- HPC: Heterotrophic plate count is used to monitor general bacteriological quality. The Guideline
 does not provide an allowable level but instead offers the OG that increases in HPC
 concentrations above a baseline level of 500 CFU/mL s are undesirable.

Document: 4721620

• **Turbidity**: Particles in drinking water can inhibit treatment and indicate potential quality concerns. The Guidelines suggests an OG of supply water turbidity target of < 1 Nephelometric Tubidity Unit (NTU) or "best possible" and should not exceed 5.0 in distribution systems.

All scheduled samples collected in 2020 met all guidelines for safe potable water. There were no occurrences of detectable E. coli nor Total Coliform. All but one sample was below the recommended maximum HPC. The HPC and turbidity levels are stable over time. The annual DNV average HPC and turbidity for the last five years are presented below.

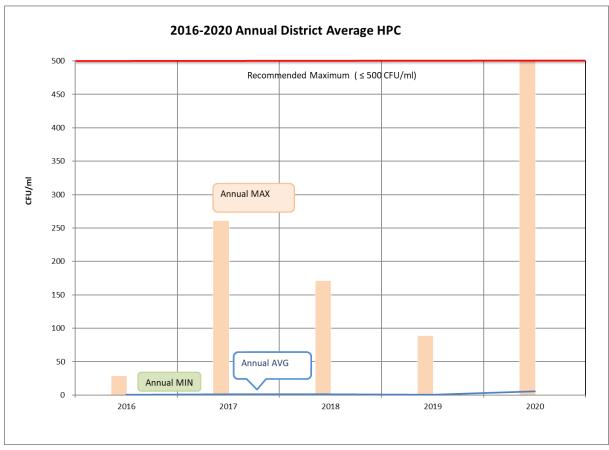


Figure 2. HPC Five Year Annual Average and Maximum Values.

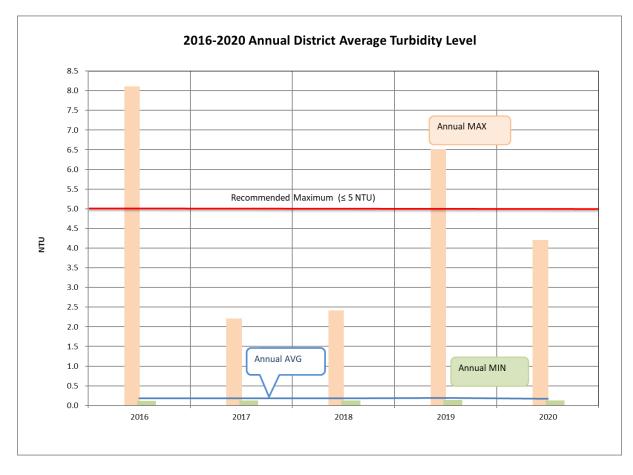


Figure 3. Turbidity Five Year Annual Average and Maximum Values.

3.2 Scheduled Weekly Chemical and Physical Parameter Results

Chemical and physical parameters, chlorine, temperature and pH, results for 2020 are summarized below.

- **Chlorine:** Chlorine is used in the disinfection process and a residual amount in the distribution system is desirable to maintain potable water quality. In 2020, all samples were within the OG range for residual chlorine, 0.04-2.0 mg/L and above the OG of 0.2 mg/L. The average systemwide chlorine residual was 0.69 mg/L. The minimum recorded chlorine residual was 0.22 mg/L. The maximum recorded chlorine residual was 1.03 mg/L. The annual DNV average free chlorine for the past 5 years is presented below in figure 4.
- Temperature: The temperature of drinking water can impact water quality and is an aesthetic parameter. The guidelines provide an AO for water temperature at less than or equal to 15°C. In 2020, 14 samples or 1% were above 15°C and occurred primarily during the months of July, August and September. The highest temperature recorded was 18 °C, the lowest temperature recorded was 2 °C and the annual system average was 8.3 °C.

• **pH:** pH is a measure of acidity/basicity and can impact corrosion rates of the distribution systems. The operational guideline is 7.0-10.5 in drinking water and the average pH for our system in 2020 was 7.4.

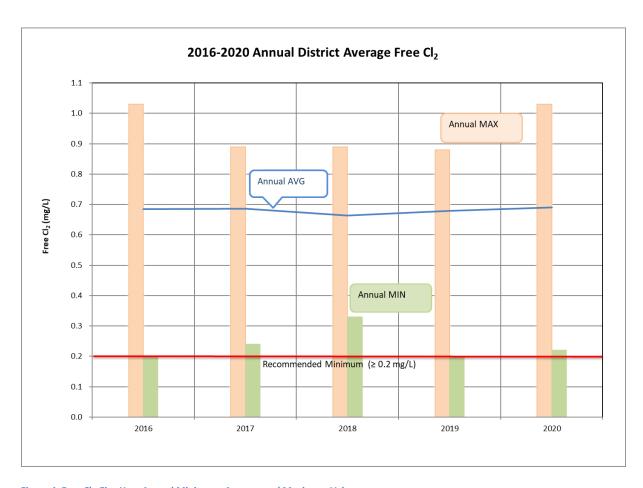


Figure 4. Free Cl_2 Five Year Annual Minimum, Average and Maximum Values.

3.3 **Quarterly Disinfection By-products Results**

Quarterly disinfection by-products tested were well below guideline limits and are presented below in Table 1.

		THN	M(ppb)	HAA	A(ppb)
Sample	Date Sampled	Total Trihalomethanes	Total THM Quarterly Average (Guideline Limit 100 ppb)	Total Haloacetic Acid	Total HAA Quarterly Average (Guideline Limit 80 ppb)
DNV-727	25-Feb-20	21	23	13.4	16
DNV-727	26-May-20	21	21	15	14
DNV-727	11-Aug-20	22	21	12.3	13
DNV-727	2-Dec-20	22	22	19.9	15
DNV-733	25-Feb-20	18	26	10.7	18
DNV-733	26-May-20	20	22	15.4	16
DNV-733	11-Aug-20	19	20	12.6	13
DNV-733	2-Dec-20	26	21	23.9	16
DNV-734	25-Feb-20	21	23	13.9	15
DNV-734	26-May-20	22	22	16.3	16
DNV-734	11-Aug-20	20	22	14.1	15
DNV-734	2-Dec-20	23	22	24	17
DNV-736	25-Feb-20	23	27	17.4	20
DNV-736	26-May-20	26	26	23.8	20
DNV-736	11-Aug-20	27	26	15.6	18
DNV-736	2-Dec-20	25	25	24.1	20

Table 1. Quarterly Disinfection By-products 2020 Results

3.4 **Scheduled Semi-Annual Metal Results**

A total of eight samples from four locations were analyzed for metals, including copper, lead and zinc. Sample sites, results, and maximum concentrations are given in Table 2 below. All samples tested for metals were below the maximum acceptable concentration guidelines for Canadian Drinking Water Quality. Where the guideline limit is 'none,' Health Canada has determined that there is currently no scientific evidence of aesthetic or detrimental health effects for that parameter at the levels typically found in drinking water.

		DNV-721	DNV-721	DNV-730	DNV-730	DNV-734	DNV-734	DNV-747	DNV-747
		2838	2838					1231	1231
		Panoram	Panoram	Braemar	Braemar	1181 West	1181 West	Lennox	Lennox
Parameter	Canadian Guideline	a Dr. 03/27/202	a Dr. 10/29/202	Reservoir 03/27/202	Reservoir 10/29/202	22nd 03/27/202	22nd 10/29/202	St. PRV 03/27/202	St. PRV 10/29/202
(Unit)	Limit	03/27/202	0 13:45	03/21/202	0 11:30	03/27/202	0 8:00	03/21/202	0 13:20
Aluminium	-	0 20020	0 20110		0 2200	0 0010		0 7 120	
Total (μg/L)	200	29	27	26	26	26	24	26	28
Antimony									
Total (μg/L)	6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Arsenic Total	10	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5
(μg/L) Barium Total	(ALARA)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
(μg/L)	1000	2.6	4.0	2.1	3.6	2.2	3.4	2.1	3.6
Boron Total	1000	2.0	1.0	2.1	3.0	2.2	3.1	2.1	3.0
(μg/L)	5000	<10	<10	<10	<10	<10	<10	<10	<10
Cadmium									
Total (μg/L)	5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Calcium		4.500	40.50				4.7.0		
Total (μg/L)	none	4600	4850	4290	4480	4470	4560	4460	4430
Chromium Total (µg/L)	50	< 0.05	0.06	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Cobalt Total	30	<0.03	0.00	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
(μg/L)	none	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Copper Total									
(μg/L)	≤2000	1.5	0.9	0.6	< 0.5	4.1	4.0	< 0.5	< 0.5
Iron Total									
(μg/L)	≤ 300	12	13	<5	<5	5	14	<5	<5
Lead Total	5 (ALABA)	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5
(µg/L)	5 (ALARA)	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5
Magnesium Total (μg/L)	none	151	180	153	190	161	193	159	197
Manganese	110110	131	100	133	150	101	175	137	157
Total (µg/L)	120	2.1	1.2	1.6	2.2	2.5	2.2	4.3	5.9
Mercury									
Total (µg/L)	1.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Molybdenu									
m Total		<0.5	-0.5	-0.5	-0.5	-0.5	-0.5	-0.5	<0.5
(μg/L) Nickel Total	none	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
(μg/L)	none	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5
Potassium	110110	10.5	10.5	10.5	10.5	10.5	10.5	10.5	40.5
Total (μg/L)	none	162	199	162	200	164	199	161	200
Selenium									
Total (μg/L)	50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Silver Total									
(μg/L)	none	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5
Sodium	≤ 200,000	1470	1720	1460	1720	1490	1740	1490	1760
Total (µg/L) Zinc Total	≥ ∠00,000	14/0	1/20	1400	1/20	1490	1/40	1490	1 /00
(μg/L)	≤ 5000	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Table 2 2020				line Limite e		.5.0	.5.0	.5.0	.5.0

Table 2. 2020 Semi Annual Metal parameter, Guideline Limits and Results

3.4.1 Lead

Lead, along with twenty-one (21) other metals, is one of the parameters analyzed semi-annually at the four locations listed above. Our lead levels are consistently less than 0.5 μ g/L or parts per billion (ppb); the Canadian Guideline Limit is 5.0 μ g/L. Metro Vancouver samples and tests our source water. Metro Vancouver's results show lead levels <0.5 μ g/L.

In March 2019, the Canadian Drinking Water Guideline limits for maximum allowable concentration (MAC) of lead in drinking water was reduced from 10 μ g/L to 5 μ g/L or as low as reasonable achievable (ALARA). Based on a Government of Canada news release, Health Canada lowered the limit to safeguard the health of Canadians. The previous limit of 10 μ g/L was set in 1992. Since then, lead levels in Canada have fallen dramatically due to strong actions taken by the Government of Canada to reduce exposure to lead. The new limits reflect the changed risk levels and were developed in collaboration with the provinces, territories, and other federal departments.

The primary source of lead in drinking water is leaching from distribution and plumbing system parts. The District does not currently use nor has ever used lead pipes in our drinking water distribution system, including services. Lead was historically used in private plumbing for the service lines that connect a home or business to the municipal water service and in plumbing fittings and solders. Until 1975, lead was an acceptable material in pipes based on the National Plumbing Code of Canada, so it is more likely to be found in older homes and neighbourhoods. The best approach to minimize lead exposure is the removal of private lead services.

Vancouver Coastal Health offers information and advice for anyone concerned about lead in their drinking water coming from their private plumbing. Information is available at the following link: http://www.vch.ca/Documents/Lead-in-drinking-water-protecting-yourself.pdf. The District of North Vancouver does not have jurisdiction, and is not required, to test private property.

3.5 Unscheduled Results

In addition to scheduled samples, 86 unscheduled samples were collected and analyzed in 2020. Twenty-five (25) samples were in response to customer or staff requests, thirty-four (34) were for new construction, seventeen (17) were due to watermain breaks and ten (10) from random Metro service work. All results were within the guideline-recommended limits.

4 OPERATIONS, MAINTENANCE & CAPITAL PROGRAMS

4.1 Water System Scheduled Maintenance

Scheduled annual system maintenance programs that support water quality include water main flushing, reservoir cleaning and scheduled water facility inspections. We follow the AWWA flushing program standards. Our 2020 flushing program focused on 12,550m of cast iron pipe, which is known to create discoloured water.

The DNV uses permanent flushing stations or regularly scheduled flushing to maintain water quality in areas with chronic aesthetic issues related to cast iron pipe. We are eliminating the flushing stations by

upgrading cast iron with our standard water main pipe, lined ductile iron. Three permanent flushing stations remain in our system at the following locations:

- 4011 Lions Avenue: Dead end 4 inch cast iron main.
- 4331 Arundel Road: Dead end 4 inch cast iron main.
- Bridgeman Avenue at West 21st Street: 6 inch cast iron main.

The DNV uses an integrated SCADA system to optimize pumping, reservoir filling and retention time to support water turnover and quality. In 2020, the radios were upgraded at all water sites to ensure continued relaiable 24/7 operations of the water system.

4.2 **Capital Upgrades**

The DNV has a fully funded water main replacement program that uses a risk-based protocol with 17 weighted hazard criteria. The DNV's water main replacement program takes into consideration multiple parameters to prioritize the annual replacement schedule. The DNV standard replacement water main is ANSI/AWWA C151 & C140 special class 50 cement-lined ductile iron pipe and specified in our Design Guidelines of our Development Servicing Bylaw. In 2018, we began using TR Flex Restraint Joint pipe wrapped in polyethylene for all of our installations.

Our prioritization protocol heavily weighs the potential of failure, consequence of failure, and water quality. In 2020, DNV construction crews completed the replacement of 3,861 metres of pipe.

The water main replaced in 2020 is listed below.

Asset_Id of Existing Main	Existin g Main Year	Existing Main Material	Existing Main Size	Project Name	New Main Size	Length (m)	New Main Material
WTRMN00989	1953	CI	150	Banburry WMR	200	224.9	Ductile Iron
WTRMN01676	1957	AC	150	Brookridge WMR	200	61.7	Ductile Iron
WTRMN01436	1957	AC	100	Brookridge WMR	200	115.3	Ductile Iron
WTRMN04896	1972	AC	150	Byron WMR	200	231.0	Ductile Iron
WTRMN10000	1969	AC	150	Draycott WMR	200	88.0	Ductile Iron
WTRMN02239	1969	CI	100	Draycott WMR	100	65.7	Ductile Iron
WTRMN01684	1969	AC	150	Draycott WMR	200	288.4	Ductile Iron
WTRMN02137	1955	AC	300	Frederick WMRP	300	141.3	Ductile Iron
WTRMN02136	1955	AC	300	Frederick WMRP	300	238.2	Ductile Iron

Asset_Id of Existing Main	Existin g Main Year	Existing Main Material	Existing Main Size	Project Name	New Main Size	Length (m)	New Main Material
New Main				Lytton WMR	300	77.4	Ductile Iron
WTRMN01862	1972	AC	150	Lytton WMR	150	35.1	Ductile Iron
WTRMN01863	1972	AC	150	Lytton WMR	300	53.2	Ductile Iron
WTRMN01999	1966	AC	200	Panorama WMR	200	223.1	Ductile Iron
WTRMN10492	2007	DI	200	Panorama WMR	200	14.3	Ductile Iron
WTRMN00511	1968	AC	150	Peters WMR	200	79.1	Ductile Iron
WTRMN01966	1969	AC	200	Peters WMR	200	90.8	Ductile Iron
WTRMN04611	1954	AC	150	Princess WMR	200	97.9	Ductile Iron
WTRMN02122	1963	AC	300	St Paul Ave WMRP	200	22.6	Ductile Iron
WTRMN02124	1963	AC	300	St Paul Ave WMRP	200	70.2	Ductile Iron
WTRMN02123	1963	AC	300	St Paul Ave WMRP	200	21.5	Ductile Iron
WTRMN02342	1969	CI	150	St Pauls Ave WMRP	200	43.1	Ductile Iron
WTRMN01554	1966	AC	150	St Pauls Ave WMRP	200	148.2	Ductile Iron
WTRMN01559	1970	AC	150	Upper St Andrews WMR	200	188.6	Ductile Iron
WTRMN01791	1965	AC	150	W 19th Keith WMR	200	145.9	Ductile Iron
WTRMN01790	1965	AC	150	W 19th Keith WMR	200	260.7	Ductile Iron
WTRMN00934	1970	DI	150	W 19th Keith WMR	200	16.6	Ductile Iron
WTRMN01771	1966	AC	150	W 19th Keith WMR	200	176.0	Ductile Iron
WTRMN00933	1966	AC	100	W 19th Keith WMR	200	4.5	Ductile Iron
WTRMN02134	1955	AC	300	Wellington WMR	300	102.8	Ductile Iron
WTRMN10198	1955	AC	300	Wellington WMR	300	183.5	Ductile Iron

Asset_Id of	Existin	Existing	Existing	Project	New	Length	New Main
Existing Main	g Main	Main	Main Size	Name	Main	(m)	Material
	Year	Material			Size		
WTRMN10197	1966	AC	300	Wellington WMR	300	351.2	Ductile Iron
					TOTAL	3861	

Table 3. Water Main Replaced in 2020

The planned water main replacement for 2021 is listed below.

Asset_Id of Existing Main	Existing Main	Existing Main	Existing Main	Project Name	New Main	Lengt h (m)	New Main
	Year	Material	Size		Size		Material
WTRMN02365	1964	CI	150	Aintree WMRP	200	93	Ductile
							Iron
WTRMN01625	1968	AC	150	Aintree WMRP	200	49	Ductile
							Iron
WTRMN02229	1964	CI	100	Aintree WMRP	100	127	Ductile
							Iron
WTRMN02787	1978	DI	150	Aintree WMRP	200	19	Ductile
							Iron
WTRMN02367	1952	CI	150	Bluebonnet	200	97	Ductile
				Bedford WMR			Iron
WTRMN02363	1951	CI	150	Bluebonnet	200	40	Ductile
				Bedford WMR			Iron
WTRMN02230	1951	CI	100	Bluebonnet	100	115	Ductile
				Bedford WMR			Iron
WTRMN02362	1952	CI	150	Bluebonnet	200	69	Ductile
				Bedford WMR			Iron
WTRMN01584	1963	AC	150	Burrill and	200	100	Ductile
				Mcewen WMR			Iron
WTRMN01584	1963	AC	150	Burrill and	200	100	Ductile
				Mcewen WMR			Iron
WTRMN01573	1970	AC	150	Burrill and	200	112	Ductile
				Mcewen WMR			Iron
WTRMN01577	1963	AC	150	Burrill and	200	52	Ductile
				Mcewen WMR			Iron
WTRMN00635	1945	WOODSTAV	150	Canfield Cresc	200	78	Ductile
		E		WMR			Iron
WTRMN10441	1953	CI	150	Canterbury	200	153	Ductile
				WMR			Iron
WTRMN01710	1958	AC	150	Crestlynn & E	200	59	Ductile
				27th WMR			Iron

Asset_Id of Existing Main	Existing Main Year	Existing Main Material	Existing Main Size	Project Name	New Main Size	Lengt h (m)	New Main Material
WTRMN00797	1958	AC	100	Crestlynn & E 27th WMR	100	55	Ductile Iron
WTRMN02062	1958	AC	250	Crestlynn & E 27th WMR	250	126	Ductile Iron
WTRMN02061	1958	AC	250	Crestlynn & E 27th WMR	250	113	Ductile Iron
WTRMN02063	1958	AC	250	Crestlynn & E 27th WMR	250	81	Ductile Iron
WTRMN10215	1956	AC	200	Dollarton Frontage WMR	200	242	Ductile Iron
WTRMN10215	1956	AC	200	Dollarton Frontage WMR	200	242	Ductile Iron
WTRMN02043	1971	AC	200	Fairway Dr WMR	200	229	Ductile Iron
WTRMN02044	1971	AC	200	Fairway Dr WMR	200	247	Ductile Iron
WTRMN01979	1959	AC	200	Fromme WMR	200	125	Ductile Iron
WTRMN10530	1959	AC	150	Garden Ave WMR	200	28	Ductile Iron
WTRMN01781	1959	AC	150	Garden Ave WMR	200	156	Ductile Iron
WTRMN02346	1952	CI	150	Greentree WMRP	200	123	Ductile Iron
WTRMN00542	1953	CI	100	Greentree WMRP	100	174	Ductile Iron
WTRMN03309	2001	DI	200	Greentree WMRP	200	55	Ductile Iron
WTRMN02146	1957	AC	300	Mahon WMR	300	158	Ductile Iron
WTRMN02150	1957	AC	300	Mahon WMRP	300	77	Ductile Iron
WTRMN01718	1970	AC	150	Masefield Rd WMR	200	122	Ductile Iron
WTRMN01714	1970	AC	150	Masefield Rd WMR	200	80	Ductile Iron
WTRMN01708	1970	AC	150	Masefield Rd WMR	200	91	Ductile Iron
WTRMN01780	1959	AC	150	McQuire Ave WMR	200	155	Ductile Iron
WTRMN01027	1962	AC	150	Naomi WMR	200	109	Ductile Iron
WTRMN01815	1962	AC	150	Naomi WMR	200	187	Ductile Iron

Asset_Id of Existing Main	Existing Main Year	Existing Main Material	Existing Main Size	Project Name	New Main Size	Lengt h (m)	New Main Material
WTRMN01498	1964	AC	150	Prime St WMR	200	106	Ductile Iron
WTRMN01487	1964	AC	150	Prime St WMR	200	45	Ductile Iron
WTRMN02109	1964	AC	300	Prospect Road WMR	300	85	Ductile Iron
WTRMN10275	1961	AC	300	Prospect Road WMR	300	202	Ductile Iron
WTRMN10276	1962	AC	300	Prospect Road WMR	300	201	Ductile Iron
WTRMN02187	1965	AC	400	Ralph St WMR	400	75	Ductile Iron
WTRMN10139	1965	AC	400	Ralph St WMR	400	271	Ductile Iron
WTRMN01512	1954	AC	150	Ralph St WMR	200	261	Ductile Iron
WTRMN10358	1967	AC	150	Sandringham Cresc WMR	200	178	Ductile Iron
WTRMN10357	1967	AC	150	Sandringham Cresc WMR	200	171	Ductile Iron
WTRMN02026	1973	AC	200	Seymour Blvd WMR	200	71	Ductile Iron
WTRMN02039	1966	AC	200	Seymour Blvd WMR	200	93	Ductile Iron
WTRMN01858	1974	AC	150	Seymour Blvd WMR	200	154	Ductile Iron
WTRMN02106	1959	AC	300	Skyline WMR	300	28	Ductile Iron
WTRMN02033	1958	AC	200	Strathcona WMR	200	125	Ductile Iron
WTRMN02037	1965	AC	200	Strathcona WMRP	200	46	Ductile Iron
WTRMN02036	1965	AC	200	Strathcona WMRP	200	104	Ductile Iron
WTRMN02035	1965	AC	200	Strathcona WMRP	200	19	Ductile Iron
WTRMN02034	1965	AC	200	Strathcona WMRP	200	65	Ductile Iron
WTRMN04976	1963	CI	100	Viney WMR	100	139	Ductile Iron
WTRMN01995	1966	AC	200	W Keith Road WMR	200	176	Ductile Iron
WTRMN01996	1966	AC	200	W Keith Road WMR	200	275	Ductile Iron

Asset_Id of	Existing	Existing	Existing	Project Name	New	Lengt	New
Existing Main	Main	Main	Main		Main	h (m)	Main
	Year	Material	Size		Size		Material
WTRMN01758	1969	AC	150	W Keith Road	200	51	Ductile
				WMR			Iron
WTRMN02384	1954	CI	150	Wiliam Ave	200	60	Ductile
				WMRP			Iron
WTRMN02386	1966	CI	150	Wiliam Ave	200	204	Ductile
				WMRP			Iron

Table 4. Proposed Water Main Replacement 2021

4.3 **Operator Training & Qualification**

The DNV's distribution system is EOCP classified as a Level 3 system. The DNV currently has distribution system operators with Level 3 operator's certification from the EOCP, keeping the DNV in fully compliant with current requirements.

5 ISSUES, INCIDENTS & RESPONSE PLANS

5.1 **Boil Water Advisory**

A precautionary boil water advisory is issued when, in consultation with Vancouver Coastal Health, a situation exists that increases the risk of possible contamination. We issued one precautionary boil water advisory on August 29, 2020, in association with a water main break at the intersection of Naomi Place and Cardinal Crescent. The advisory was lifted on September 1, 2020. In early 2021, the District replaced this section of water main as part of our replacement program.

5.2 **Customer Complaints**

We recorded twenty-two (22) customer complaints for either colour or odour. Eighteen (18) or 81% resulted from either known construction/operational activities or cast iron mains with documented discolouration potentials.

5.3 **Ductile Iron Supply & Storage**

In 2018, we had an incident that resulted in repeat total coliform detected in new ductile iron pipe, not yet tied into the system. This led us to investigate and change our pipe storage and purchase practices. As a result, pipe stored in our secondary area (Beach Yard) is elevated on skids and wrapped and all-new DI pipe is ordered with factory caps on the ends. This practice continued in 2020.

5.4 **Security**

DNV water storage reservoirs and pumping facilities have signage, secured access, intrusion detection linked to the automated SCADA alarm system and designed fail-safe valve operation to inhibit or reduce

the impact of security threats. Each facility is attended frequently for inspection and routine operation and maintenance.

5.5 Water Main Breaks

We responded to 15 emergency water main breaks in 2020. Water main break response protocol includes maintaining positive pressure to protect the water system from potential contamination.

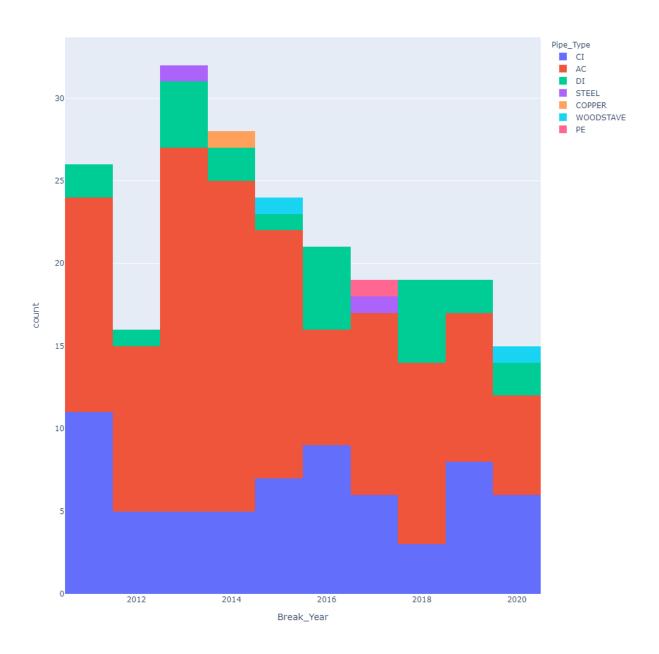


Figure 5. 10-Year Water Main Break Summary

5.6 Notification & Emergency Response

The table below outlines our notification process for unusual situations that could potentially affect water quality and notification is required.

NOTIFICATION		ATIONS POTENTIALLY AF	FECTING WATER
Situation	Notifying Agency	Agency Notified	Time Frame For Notification
E. coli -positive sample	GVWD	DNV and Vancouver Coastal Health (North Shore)	Immediate
Chemical Contamination	GVWD DNV	Vancouver Coastal Health (North Shore)	Immediate
Turbidity > 5 NTU (Coquitlam Reservoir only)	GVWD	DNV and Vancouver Coastal Health (North Shore)	Immediate
GVRD Source treatment failure	GVWD	DNV and Vancouver Coastal Health (North Shore)	Immediate in any situation in which the BCSDWR or the GCDWQ may not be met
Loss of pressure	GVWD DNV	GVWD Operations and Vancouver Coastal Health (North Shore)	Immediate
Water main break with contamination suspected	DNV	Vancouver Coastal Health (North Shore) PEP	Immediate
Water main break with no suspect contamination	DNV	Vancouver Coastal Health (North Shore) PEP	As required by Health Authority. PEP as soon as possible

Table 5. Water Quality Notification

5.7 **Response Plans**

The flow diagram below illustrates the process that has been put in place for response to incidents that could potentially affect water quality during a loss of system integrity. Additional or cascading response protocols are outlined after the chart.

(Line breaks, vandalism, loss of pressure, chemical or microbiological contamination) **Business Hours** After Hours Section Manager, Utilities Construction On-call Standby receives and Maintenance (SMUCM) or information designate receives information Determine problem and identify if any potential contamination of the water supply occurred and/or if incident has or could negatively impact the environment. Also evaluate the nature of municipal response required - the municipal response will be tied to the GVWD response if the issue arises in the GVWD water system. Possible Contamination No Possible Contamination With No Possible Suspected Environmental Impact (chemical or microbiological) Contamination and No Environmental Impact 1st Priorities Mitigate environmental damage as able. Isolate section or facility from system - If not possible 1) Immediately minimize flow from impacted section of the Determine problem take steps to minimize the impact on the environment. system and proceed to isolate section or facility from the and coordinate Priority Notification (immediately following steps system -if not possible, take steps to minimize the impact immediate corrective above): on water consumers. action, repairs. On-call Standby notify SMUCM or designate 2) Immediately notify DNV Water Quality Foreman. Internal: District Environment Dept. (to be notified by Implement environmental impact mitigation if required. External: affected parties (e.g. Homeowners) and others (i.e. PEP and DFO) as required. (To be notified Routine sample and by DNV Environment Dept.) flush if required Water Quality Foreman evaluates situation to determine impact to water quality. Consults with SMUCM and to determine course of action including initiation of Water Contingency Protocol (for boil water or other advisories) if required. SMUCM notifies DNV General Manager or Manager, Metro Vancouver, and water quality contacts of

District of North Vancouver Response Procedures For Loss of Municipal System Integrity

Figure 6. Loss of System Integrity Response

• Water main Breaks

Water main breaks pose an increased risk for potential contamination. Response procedure and repair practices are in place to reduce the risk of contamination. In instances where contamination of the system is suspected, DNV Utilities crews make adjustments to isolate the section or facility from the

other municipalities if water quality advisory proceeds.

system. The DNV immediately consults with Vancouver Coastal Health (North Shore) regarding further actions, and all water quality complaints from the public will be immediately and thoroughly investigated for potential contamination.

Following all water main breaks, water samples are analyzed from the vicinity of the break and tested for bacteriological, chemical and physical parameters.

• Turbidity Events

Turbidity in the DNV water distribution system is monitored on a regular basis through the water sampling program. Water sampling results yielding readings greater than 1 NTU are scrutinized. All areas from which turbidity results > 5 NTU are flushed and re-sampled for free chlorine and turbidity. Flushing in areas with turbidity < 5NTU is at the operator's discretion.

Loss of Pressure Due to High Demand

In the event of adverse pressure loss due to high demand, DNV Utilities crews make adjustments to the system to isolate the section or facility and then take measures to supplement pressure in the affected area. The DNV immediately consults with GVWD and Vancouver Coastal Health (North Shore) regarding further actions and all water quality complaints from the public are immediately investigated.

• Positive E-coli Results

If a sample submitted from DNV and analyzed by the Metro Vancouver laboratory or the BC Centre for Disease Control tests positive for E. coli, the following response plan will be put into action:

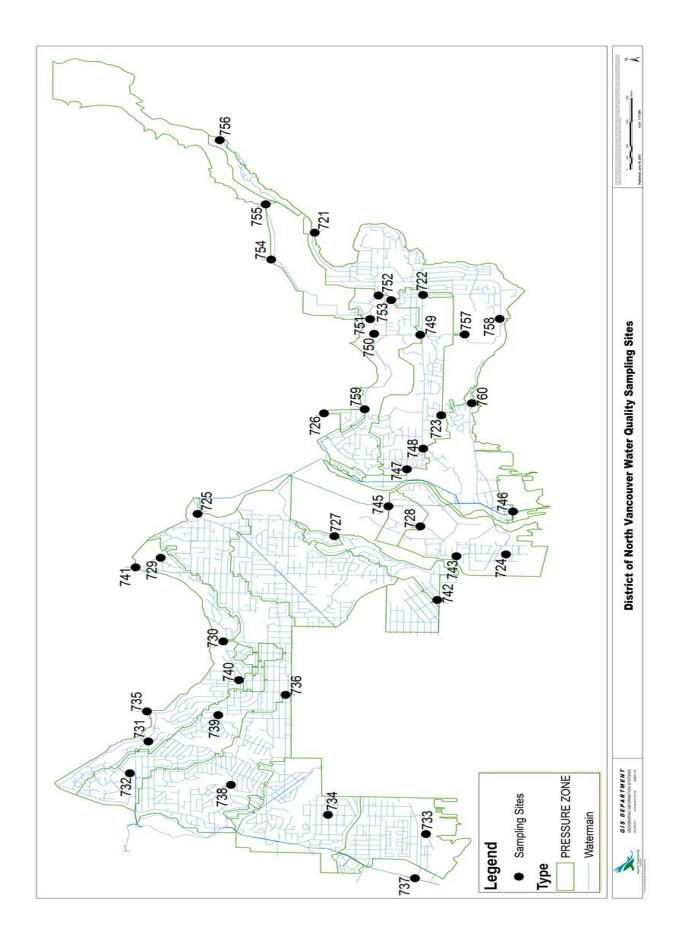
- i) Results of interim samples, if any, from the site will be examined by the lab. Interim samples are any samples that may have been taken from the site in the period between when the E. coli -positive sample was taken and when it was determined to be positive.
- ii) The chlorine residual noted on the sampler's field sheet will be reviewed by the lab and compared to previous readings to determine if there had been a localized loss of disinfectant residual.
- iii) The DNV Section Manager of Utilities Construction and Maintenance (SMUCM) or designate and Vancouver Coastal Health (North Shore) will be notified immediately by the laboratory.
- iv) Arrangements will be made for the immediate collection of a repeat sample (including, where possible, samples from upstream and downstream of the positive sample location).
- v) Vancouver Coastal Health (North Shore) will be contacted and the need for a "boil water" advisory will be evaluated.
- vi) If a "boil water" advisory is warranted, the public notification process as outlined in the Water Quality Monitoring And Reporting Plan For The GVRD and Member Municipalities will be followed.

vii) The lab will contact the DNV with repeat sample results and the results of the species identification tests. The DNV will contact Vancouver Coastal Health (North Shore) to evaluate these results and to determine whether or not the advisory can be lifted.

• Chemical Contamination

In the event of chemical contamination in the DNV water distribution system, Vancouver Coastal Health (North Shore) will be immediately notified. Immediate steps will be taken to isolate the contaminated area and the level of contamination will be determined through water sampling and testing. The chemical will be identified and any public health risk factors associated with the chemical presence will be determined. Through consultation with Vancouver Coastal Health (North Shore), a public advisory will be carried out.

• Source Water Event

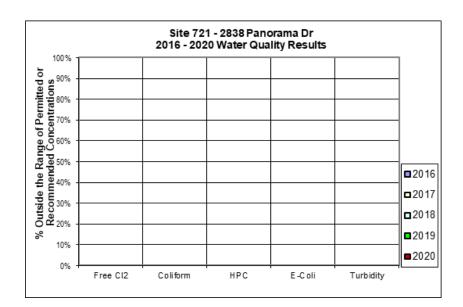

In 2007, a task force comprised of Metro Vancouver, Vancouver Coastal Health, Fraser Health and member municipalities developed a communications template for source water major turbidity events. The template outlines the responsibilities of Metro Vancouver, the Health Authorities, and municipalities for notification and communications to each other and the public.

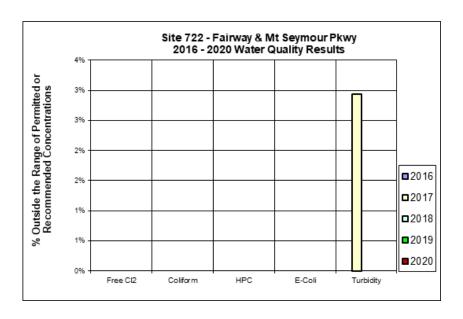
• GVRD Disinfection Failure

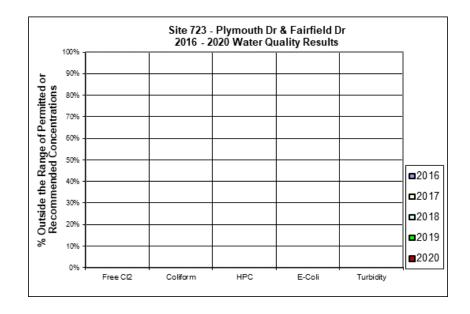
Upon notification by GVWD Operations that an interruption in disinfection has occurred, DNV Water Quality personnel will immediately commence monitoring free chlorine residual levels at strategic locations and will contact the Vancouver Coastal Health (North Shore) if continued loss of residual is observed.

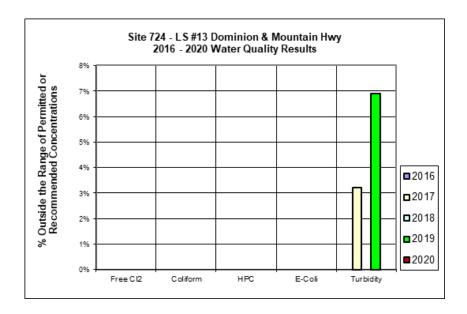
Document: 4721620

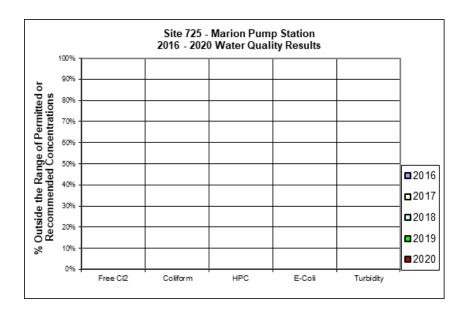
APPENDIX A: Water System, Sample Sites and Sample Schedule.




Site	Lab		
I.D.	No.	Sample Site Location	Flow Rate
1	721	2838 Panorama Dr.	Dead End
2	722	Fairway & Mt Seymour Pkwy.	Medium
3	723	Plymouth Dr & Fairfield Dr.	Medium
4	724	LS #13 Dominion & Mountain Hwy.	Low
5	725	Marion Pump Station	Source
6	726	Hyannis Reservoir	Low
7	727	Hoskins Rd & Kilmarnock Cres.	Medium
8	728	Lillooet Road	Low
9	729	Ramsay Pump Station	Medium
10	730	Braemar Reservoir	Low
11	731	Skyline Pump Station	Medium
12	732	Sarita Pump Station	Source
13	733	McKeen Ave & Phillip Ave.	Dead End
14	734	Pemberton Heights	Low
15	735	Prospect Reservoir	Low
16	736	PRV #4 (W Queens Rd. & Lonsdale Ave.)	Low
17	737	N. of BC Rail Tracks just East of Lower Cap. Rd.	Source
18	738	3906 Sunnycrest Dr.	Medium
19	739	376 Cartelier Rd.	Medium
20	740	PRV #5 (190 E. Braemar Rd.)	Medium
21	741	Mountain Hwy Reservoir (North up access Rd., N. of Mountain Hwy.)	Low
22	742	PRV # 11 (Across from 1086 Cloverly St.)	Source
	743	Not in Use	
	744	Not in use	
23	745	PRV # 13 (N. of 1388 Monashee Drive (Capilano College))	Source
24	746	PRV #17 (60 Riverside Dr.)	Source
25	747	PRV # 19 (1231 Lennox St.)	Source
26	748	PRV # 16 (2592 Bendale Rd.)	Low
27	749	PRV # 18 (3728 Mt. Seymour Parkway)	Medium
	750	Not in Use	Medium
	751	Not in Use	Low
28	752	PRV # 25 (4068 Deane Pl.)	Medium
29	753	PRV # 20 (1501 Theta Ct.)	Low
30	754	Woodlands reservoir (2.1 km N. of Hixon Rd. on Indian River Dr.)	Low
31	755	PRV # 26 3.7 km NE of Hixon Rd. on Indian River Dr.	Low
32	756	End of Fire Lane # 7 (Firelane #7 is 3.6 km from Hixon Rd.)	Dead End
33	757	PRV 200 m south of 879 Roche Point Dr.	Medium
34	758	3860 Dollarton Hwy.	Medium
35	759	Hyannis Pump Station (1919 Hyannis drive)	Low
36	760	3000 Block Dollarton Hwy.	Dead End


DISTRICT OF NORTH VANCOUVER WATER QUALITY SAMPLING AND REPORTING CALENDAR - 2020


		Jan		Feb		Mar		Apr		May		Jun		Jul		Aug		Sep		ct	Nov		Dec	
DISTRIBUTION SYSTEM SAMPLING																								
	XX	XX	ХX	xx	хх	хх	ХХ	ХХ	хх	хх	хх	хх												
chlorine, temperature	XX	XX	XX	XX	XX	XX	XX	ХХ																
(twice weekly)																								
HAA's, THM's, pH (quarterly)				Х						Х						Х							Х	
metals - copper, lead,																								
zinc									Х														Х	
(semi-annually)																								
NOTIFICATION																								
Annual Report:																								
Annual report send to MHO												Х												
MHO responds																Х								
Staff report to Council																		Х						
Post on Web																				Х				


APPENDIX B: Five Year Results by Water Quality Sample Site. 2016 - 2020

